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Axiomatic Theory of Control Systems.

by
Emilio Roxin*

(RIAS and University of Buenos Alres)

1. Introduction.
Control systems, in the broadest sense, are those systems whose

behaviour is no:t uniquely determined by the initial conditions and the
characteristics of the system itself, but there is some external action
vhich determines the evolution of the system. When there 18 no extermal
action, one generally says that the system 18 in its "free regime, but
it is really arbitrary, to some extent, wvhere the zero for the extermal
action has to be set. The classical description of the free physical
systems is made by differential equations which, together with some
initial conditions, determine uniquely its time-evolution. A’écofdingly,
the description of control systems is made mostly in terms of ‘dirreren-
tial equations, in which some "control parameter” appears, so that in
order to obtain a solution it is necessary to knowv the value of that
paremeter, as a function of time or of position. Before fixing that

control function, the only knowledge about the bebaviour of the system

This work was supported in part by the Air Force Office of Scientific
Researchr under contract AF 49(638)-382; and the National Aerospace and
Space Administration under contract KASr-103. Reproduction in whole or
in part is permitted for any purpose of the United States Government.
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is the whole set of possible states vhich can be attained by all
possible choices of the control action. This set of attainable (or
reachable) states has been used recently in many papers about control
systeas [2]) [5] [9] 0] (11].

As & generalization of the theory of differential equations, the
| topological dynamics studies all properties which are characteristic for
. solutions of differential equations, without a direct reference to those
squations, by assuning as axioms the basic properties of such curves
(3] [s] [8]. S8imilarly, for comtrol systems the basic properties of the
solutions can be assumed in order to develop the vhole theory in an
axiomatic way. Here the axioms bhave to refer to the properties of the
attaimable set, this is the :et of all attainable states (by means of
all possible control actions) as functions of tizme and initial position.
Parbashin [1] gave such axioms for "generalized dynamical systems” and
gubov (13] also used similar general systems for proving theorems about
stability. Nevertheless, the applications to control theory can be
exploited much farther than in those references, so that it :-éeéum vorth-
vhile to glve a complete exposition of this subject starting from the

wvery beginning. This will be attempted in the present paper.

2. potation.

let X = (x) denote a complete locally compact metric space; its
points represent the "states” of a glven system. The independent wvariable
t € R will be called time. Point sets in X-space will be denoted by

capital letters A, B, ...; collections of such sets by script capitals

78/
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In order to avoid infinite distances between sets we may re-

place the given metric d(a, b) by

(2.1) o(s, b) = oigrbls

Furthermore, we define the distance between points and sets,

and between sets, by:

(2.2) p(a, B) = p(B, a) = inf{p(a, b); b € B}
(2.3) p*(A, B) = sup{p(a, B); a € A}.
(2.4) p(A, B) = p(B, A) = max(p*(A, B), p*(B, A)).

Accordingly we define an €-neighboring set of a given set AO

as
SG(AO) = (x ¢ X; p(x, A,)) <e€}.
Notations which also will be used in this paper are-the following:
d (X) = the collection of all non-empty subsets of X.

B

9( (x)
@ (x)

It is well known that (2.4) defines a pseudo-metric in the set

the collection of all non-empty bounded subsets
of X.

the collection of all non-empty closed subsets of X.

the collection of all non-empty cocpact subsets of X.

of all non-vold subsets of X (p(A, B) = 0 if and only if A = B, A
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denoting the closure of A). Restricting the attention to closed sub-
gets, (2.4) defines a true metric (called the Hausdorff metric). For
further details about the topology of spaces of subsets of X, the

reader is referred to (6], [T1].

3, The attainabllity function.

A control system will be given by a function which we call
"attainability function" and has the following intuitive meaning. The
evolution of a general cpntrol system is determined by its initial state
x, the time t and some control action. Therefore, a given starting
point X to and a time tl > to determine a whole set of possible
end states x(tl), corresponding to all possible cholces of the control
action. This "attainable set from x,, t, at time t,"” will be de-

1l
noted by F(xo, t tl).

The following axioms will be assumed:

I) F(xo, t , t) 1s a closed non-empty subset of X, defined for

0’

. . s
every x € X; ¢t, to € R; to s t.

II) Initial condition: F(xo, tos t)

[xo) for every X, to'

A
(24

III) Semigroup property: for t st °

F(x,, t, t;) =

. F(xl, t, t2).
1

u
€ F(xo,to,tl)

s
IV) Given Xx,, 1y b, E Y there exists an X such that
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x, € P(r'o, t, ).

V) F(xo, t» t) 1is continuous in t: given X to3t, >0,
there 18 & b > 0 such that p(F(xo, ts t), F(xo, t, tl)) ¢
for |t - tl| < 6.

vI) F(xo, t, t) 1s upper semicontinuous in (xo, to), uniformly in
any finite interval t e T = [tl, tal, to 2 t’l ES t.2: glven

and € >0, there isa & >(¢ such that

X, to, b, t

o’ 2

D'(F(Xo', té: t), F(xo.v to) t)) <e
for all x‘;, té, t satiefying
p(x!, x ) <8, [to - tél <L, ottt

It 18 interecting to rnote that axlioz III ie egulvnlent, Lo, th

following two together:

III a) Ir x € F(xo, tos bl omniox € F(x;, t., L, then
x., € F(x_ , t , t j.
] ( o) ;) dl
III b If x_ € Flx , ~,t, s + 2z =39 there exies:
) 2 Tt et T % - e o aEe
ar x. ¢ ?"c’ Y5 %, Danhotnas z, - Flrz., ., KR
Each of tne axinnz 110 a, 2nd IID o, are lriegencent Lt e
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Exaample 3.1. X = Rl. X € F(xo, to t) 1f and only

Ix-xol salt -t) for t -t sT>0,

|x-xo|§aT+5(t-t°-T) for t -t % T.

If 0<a<p (figure 1), the system satisfles axioms 1, 2, 3a,

L and 5 but not 3b.
If 0<pB<a (figure 2), the system satisfies axioms 1, 2, 3b,

4 and 5 but not 3a.

The independence of axiom IV is proved by the next example.

Example 3.2, X = Rl.

b 4
F(xo) toa t) = {x} = [l ¥ x ?(t-t )). (t to).
o o

The relation between X, and x 1is

1 1
x'xo+t-t0 for Xy x>0
1 1
x-xof(t-to)for x, x <O0.
Therefore
x = X
o

1 - |x] (t -t)

vhich tends to infinity for t - to - —l—, ard for t_ st - L

o}
[x] x|
there is no point X, satisfying the axiom IV, in spite of the fact

that all the other axloms are obviously fulfilled (figure 3).
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4. Properties of the attainability function.

Lemma 4.1: The attainabllity function F(x, t, t) 1is upper

semicontinuous in the triple (x, t o t).

This follows directly from the inequality

p*(F(xé, é: t'): F(xo, to: t)) ]

b P*(F(xé) é: t'), F(xo: toa t')) ¢+

+ D(F(xo: to, t'), F(xo: tot t)).

o’ to’ t and € >0, one can find 81 > 0 such that

for |t' - t| <& the last term is less than % and then find b,

Indeed, given x

for

rom

such that the first term of the right member is less than
D(xé, xo) < 52, lté - tol < 52, uniformly in the interval

[t - t| = 5,.

lemma 4.2: If X and Y are complete locally compact metric
spaces, and if the function F: X -»Q(Y) 1is upper semicontinuous in

the sense that given Xx ¢ X, € >p, there isa 5 >0 such that

p(x, xo) < & implies p*(F(x), F(xo)) <€, then the function

i (L) ->Q(Y) defined by

F(A) = U F(x) (AC X; A#¢)

X € A

is upper semlicontinuous for compact seils; wore exactly, if Ao(: X 1is

compact (and non-empty), tren for ary € >0 there is a 5 >0 such that
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p*(A, Ao) <5 implies p*(F(a), F(ao)) <e.

Proof: The conditions for upper semi-continuity can be written

F(84(x,)) C 8, (F(x,))

respectively

F(sg(A,)) C s (F(A))).

Each point x € A has a neighborhood V(x) such that

F(v(x)) C s‘(F(x))C SG(F(AO)). The set

V.= U V(x)

X €
A()

18 open and contains the compact set Ao, therefore there isa & >0

such that Sb(AO)C V. Hence

F(sg(a)) C F(vy) - 3A:(v(x)) C 5 (F(a))-

Theorem 4.1: If AOC X, TOC R, TlC R are compact non-empty sets
and for any pair to € T, tl € Tl the relation to H tl holds, then

the attainability function

F(Ao, T,» Tl) = U F(x, t t)
X € Ao

toe Tc;

t.eTl
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is upper semi-continuous at (Ao, T, Tl); more exactly, given A, T,

Tl and € >0 there 18 a & >0 such that

pr(A, Ao) <5, P'(T‘;J To) <5, P'(Ti) Tl) <b

imply

p*(F(A, T:,: Ti): F("O’ TO: Tl)) <e.

This is an immediate consequence of Lemma 4.2, It obviously
can be formulated in a little more general way, taking in the (to,tl)-plane,
instead of the rectangle To X Tl, any domain D such that for any

pair (t, t )¢ D the relation t, & t, bolds.

Jerma 4.3, If AC X is compact, there 1s an ¢ >0 such that

the closure of 8 (A) 1is compact.

Proof: X being locally compact, each x € A has a neighborhood

V(x) with compact closure. From U V(x) it is possible to select a

n x€AR
finite covering of AC UV(x,). Then V_= UV(x,) 1s an open set
11 1 °© 4 1

with compact closure. There 18 an €-neighborhood of A contained in

vo and SeiAs, being a closed subset of the compact set i:, is also

compact.

Lemma 4.4: If AC X 18 not totally bounded, then there is an

€ >0 such that 1f p¥(A, B) <€, then B 1s also not totally bounded.

—— -t sl . wirin
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(A set is called totally bounded if for any € >0 it can be covered

by a finite number of sets of diameter less than €).

proof: Assuming p*(A, B) <€ and B totally bounded, 1t

is possible to cover B with a finite number of balls of diameter 2¢:

n
B( 1glsse(xi).

Zach point of A 1s at distance less than € from some ball 8‘(::1)

and therefore at distance less than 2 from x,. In consequence

n
AC 12193("1)

apnd this can be done with any € >0, Therefore A 1is totally bounded,
contrary to the hypothesis.
Theorem 4.2: If x€X, t, 2 0, and F is the attainability Pmetion

of a generalized control system, then F(x, t, t‘l) 1s coapact.

Proof: F(x, t tl) 18 closed by axiom I, so that it has to
be proved that it is totally bounded. The set of values of te [t t,]
for wvhich F(x, t , t) 1s not totally bounded (assuming 1t 1is non-empty)
has a greatest lower bound t*. In any peighborhood of t#*, <there
are values t!, t" such that F(x, t, t') 1s totally dounded and
F(x, t t") 1s not. By continuity of F(x, t, t) \rl.th respect to t
and for any given € >0, the neighborhood of t* can be chosen 80 that

for any value t of 1t, p(F(x, t t*), F(x, t,, t)) <e. Assuming
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! r(x, t,, t*) totally bounded and therefore compact, this contradicts
lemma 4.3. Assuming F(x, t o’ t*) not totally bounded, it contradicts

Lemma b.4. Therefore t* does not exist and as F(x, t t) 1is com-

5 pact for t = to’ it is also compact for all t > to.

Theorem 4.3: If AC X 1s compact and t &t , then F(A, t, t) 1s

coapact.

Proof: The set F(x, t t) is compact for each x € A and
by Lemma 4.3 there is a neighborhood W(F(x, t t)) with compact closure.
Ry the upper semi-continuity of the attainability function (axiom Vi)
there is a peighborhood V(x) such that F(V(x), t, t) C w(F(x, t, t)).
As A 1s compact there 1is a finite set x, € A, (t =1,2, ..., n) such

n
that V.= UV(x,) DA. Therefore
o T gt

n
PV, t, t) = igll-*(v(xi), t, t) DF(A, t_, t)

and the set F(A, t o, t) 1is contained in the compact set

n
u wF(x,, t, t))
1:1 1, | o’

and is totally bounded. The proof will be complete by showing that it

{8 also closed.

Ir yieF(A, t,, t), (1=1,23 ce.), and inm Yy = Yo
=P OO

~there are points x, € A (1 =1,2,3, ...) such that y, € F(x;, t,, t).




-12-

By compactness of A, some subsequence X, converges to some X, € A;
from the upper semi-continuity and closedness of PF(x, to, t), the

result y, € F(x t, t) 1s easily obtained.

o’

Corollary k.1: If A is totally bounded, so is F(A, t, t). 1Indeed,

A 1is compact and F(A, t_, t) 1s a subset of the compact set

o’

F(A, to t).

Corollary 4.2: If A(C X 1s compact, TOC R is compact and T( R
is compact and such that to st for any pair to € '1'0, te€T, then

F(A, T, T) 4s also compact.

The proof is easily obtained replacing "x € X" by
"(x, t, t) € X x " 1in the proof of Theorem 4.3. It can even be
generalized to the case (t , t) € VC K such that if (t , t) ¢ V,

then to ¥ t.

Theorem 4.4: If AC X and T _C R are compact sets, then the attain-
adbility function F(A, To’ T) 4s continuous in T, where it is defined

(.e. for 7% all t ¢ T,).

Proof: From Theorem 4.1 it follows that, given T, ¥ all
to € To and given € >0, there exists 5 > 0 such that for

|x -7, <& end T2 all t €T,

p*(F(A, TOJ 1), F(A, To’ To)) <eg,
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so it remains only to prove the opposite relation, p*(F(A, T, ‘ro),
F(A, To: t)) <e.
For any point x € F(A, T, 10) there 1is some 6(xo) such

that for |t - 1°| <8(x,) and T all t €T,
p(xo, F(A, T, 1)) <e.

Indeed, to prove this it suffices to take x € F(a, T» t) in the

following way:

‘1) 4f T >7, take x¢ F(x, T, ) C F(A, T, 7);

11) 1f T <7, take x ¢ F(A, T, 7) and such that x ¢ F(x, 1, "o)’

vhich is possible by axiom III b;

take x = x .

111) 1f % = T, o

In all three cases, T 7T implies x —x vhich proves that
p(x, x)) -0 and

lim p(F(A, To’ ), xo) = 0.
T —’1'0

Now suppose that 1lim p*(F(A, T, % ), F(A, T, 7)) =0 1s
T T
o
false. Then there are sequences T, -7  and x, € F(A, T, 7))

(1 = 1,2,3, ...) such that p(xi, F(A, T, 1,) >a >0. By compactness,
the sequence Xy has & limit point and some subsequence

Xy

p(x], x,) <% and p(x,, F(A, T, 7}) <5 in contradiction with

—+x € F(A, T, 10). But then there is some n such that for 1i' >n,

p(xi: F(A, T, T{)) >a.
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lemma 4.5: If the function F: [to, t1] - 6(!) is continuous and

P(to) is connected, then F( [to, tl]) 18 'a continuum (compact and

connected).

Proof: To show that it is compact, consider a sequence
x, € r([to, tl] (1 =1,2,3 ...). Obviously x, € F(ri), T, € [to, tl]
and in order to prove that the sequence Xx, has a limit point one may

assume 1'1 -.1'0 for 1 o, Now

plx,, F(x,)) % plx,, F(x;)) + p(F(,), F(3));

the first term of which is zero and the second tends to zero by continuity.

Hence

1im p(xi, F(fi)) = Q.

1 o=
As F(‘ro) € (,o(x) is compact, almost every x, belongs to some compact
neighborhood SGZFZ'COH, which proves the existence of a limit point
x, € F(TO)C F(lt,, tl]).

In order to prove that it is connected, assume that

r([to, tl] = Fl UF, 1s & separation (i.e. F, and F, are closed and
disjoint). Consider F( [to, t]) as a functionof t: for t = t, it
is connected, for every t € [to, tl] it is compact and it is continuous
in t (which follows easily from the continuity of F(t)). Moreover,

it is nondecreasing: if t_ s t' £t" then F(t')C F(t"). Therefore
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!‘(to) C F, UF, and as F(to) 18 connected one may suppose that
F(t))C 7.

Divide the interval [to, t,] in twvo sets: those values of t
for which F([t , t]1)( F, and those values for wvhich F( [t,,t]) nF, £ 4.
It is easy to see that because both sets are closed and supposedly non-
empty, they define a separation of the interval [to, tll, vhich is

absurd because [to, tl] 18 connected.
An immediate consequence of this lemma is the following theoream.

Theorem 4.5. If AC X 1s a continuum, t,5t; and PF(x, t, t) the

attainability function, then F(A, t o’ [to, tl]) is a continuum.

5. The attainability function for t < tv.

The domain of definition of the attainability function
F(x, t,, t) can be extended in a natural way for the values t < t,.
Almost all basic properties are maintained; the only exception being the
-continuity condition which is not satisfied in the strong form of axionm V.
In order to distinguish between the function already defined and

the extension to be defined now, the notation G(x, t,, t) vill be used

for the extension.

Definition: The function G(x, t,t) (xeX; t,eER; teR tst) o
J/( (x) 1s defined by

yeG(x, t, t) <=>xe F(y, t, t).

Kote that the relation between F and G 1s reciprocal, bdbut

they are not "inverse” functions of each other.



=16~

Proposition 5.1: If xe€ X and t Zt, then c(x, t, t) is a

closed non-empty subset of X.

Proof: Suppuse y, € c(x, t t) (1 =123 ...) and
lm y, =y. Then x¢ F(yi, t, t)) and

1 oe

p(x,!'(y,t,to)) s p(X,F(yi,t,to)) + P*(F(Yiit:to); !'(y,t,to)).

Yow, p(x, r(yio t, to)) =0 and 1115 P'(F(Yipt)to): r(Yst:to)) =0,
-t ®

therefore p(x, F(y, t, to)) =0. As F(y, t, to) is closed,

x¢ Ky, ¢, to) and y ¢ G(x, t, t). This proves that o(x, t,, t)

is closed. That it is non-empty fonow;?rom axiom IV.

Proposition 5.2: G(x, t, to) = (x].

Proposition 5.3: If x, € X and to 2 tl z t2, then

6(x, t, t,) = U G(x,, t,, ¢.).
[ [o] 2 1, l’ 2
x, € G(xo,to,tl)

Proposition 5.4: Given x € X, t, % t,, there exists a y e X such

that x ¢ G(y, t, tl).

The proofs of these propositions are straightforward. -

The function G(x, t o’ t) 18 not, in general, continuous in

t. A counterexample follows, in which the set G(x, t,, t) becomes

unbounded.
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x]... for x>0

X
[1+x(t-t)’

r(x’ to’ t) =

x L] L ] L ] L] L L] . L] L] ror x ‘ o.

Then (see fig. k&)

v, =30 -to)] + oo for ¥y >0, y(t-t)) <1

G(y,t,to)- ¥, ) ¢« « « ¢ ¢ ¢ ¢ s« for y>0,y(t-t°)31

y. L L [ ] [ ] L) *® [ ] [ ] L ) L ror y‘o.

lenma 5.1: If y, € F(xo, t tl), t, ¥ t, then the set

is a continuum, ‘.e. compact and connected.

Proof: Consider the set

o

Az) = F(xo.v tos )N G(YO: 1? 1)

for to £T s tl. It 18 non-empty by virtue of axiom III b. It is com-
pact because it is the intersection of a compact and a closed set. It

will be proved that it is continuous in ¥, 1i.e.
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p(A(s), A(7))) = max(p*(A(7), A(5,)), p*(A(7,), A(T))) =0

for T -°T .
o

If’ for 1= 1,2,3, seey zi —.zo’ fi -"o, To’ 11 € [to, tl]

and z, € A(T 1.) » then by continuity of the attainability function

1

5, ¢ r(xo, t, %)

Besides,
g ¢ 6(yy ty, 7,)

is equivalent to

Yo € F(z,, 74, ty)
and by semi-continuity and closedness of F,

Y, € F(zo, Ty tl)

or

Z, € G(yo.v ty ‘o):

so that

lzo € A(to).

This proves that
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Un pr(A(r,), A(r)) =0
< -b‘l'o

it 1s sufficient to show that given z, € A(fo) and T, -7,
(1=1,2,3, ..., T, >t)) there exist z, € A(ti) such that z, -z .
The cases Ty 8T, and 7T, < 1‘6 vwill be treated separately and the
general case follows as a combination of both.
Suppose 1’1 >1'°. The set
’(’O: To? "1) n G(yo.v tll 71)
is a subset of A(‘ri)g it 1s non-empty because Y, € r(zo, Tos tl)'

Taking as z, eny point of this set, it follows that

111m z, € lim r(zo, T 1’1) - [xol.
-2 ® p GPNY ]

Buppose now 1’i < ‘to and ta.ke
2, € 6(z,, Tor T4 N r(xo, tos T4)s

vhich is a non-empty subset of A(‘ri). As z, ¢ r(xo, t,, [to, t]_])
and this set is compact, the sequence zi has some limit point and it
may be assumed z, -+ {. It wvill be proved that ¢ = Z,. Indeed,

z, € F(z,, T T)

and from the semi-continuity of the attaimbdility function ’
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5, € ) [ Ty "o) = ()

follows.

Baving proved that A(7) is continuous, the desired result

follows from lemma 4.5.

Theorem 5.1: If G(xo, t 1’0) 1s compact and t T, the function

o?
G(x, t, ¥) 1s upper semi-continuous at (x, t , 7.), 1.e. given
€ >0 there 1sa 8 >0 such that for p(x, x ) <8, [t -t | <3,

e -5l <8
e*(c(x, t, 7), 0(x°: to’ 10)) <e.

Proof. If the theorem were false, it would be possible to deter-

mine sequences
X, X, by b, Ty T, b 2T,y € G(xi, t., zi), (1.=1,2,3 ...)

such that the sequence y, has no limit point belonging to G(xo,to,‘ro) 3
it will be proved that this assumption leads to a contradiction.

Consider first the case when the sequence Yy bhas some limit
point Yo' Taking a subsequence one may write Yy =Y, and it will be

proved that y ¢ c(x t, 'ro). Indeed,

o’

v, € G(xi, ti’ 1'1)



x € P(yix Ty ti)
and by the upper semi-continuity and closedness of P(yo, Tor to) ,
X, € F(YO: T’ to)°

Now the case of ¥, not having any limit point has to be ruled
out. The set G° = G(xo, to, ‘to) is compact by hypothesis, so that the

set

BE=F(G, 7, [t, t])

is also compact and x, € H, (£ig. 5). Therefore there is scme sphere

IZ(a, r) of center a and radius r containing E in its interior.
As x, —x it may be assumed that ‘xi is also interior to Z(a, r).
Buppose the sequence Yy has no limit point. Then, disregarding

a finite number of terms, ¥, 1s exterior to Z(A, r). Now, the set
r(yit 1"1) [‘ril til) n G_(xii til [Ti) til)

is & continuum Joining y, and x (Theorem 4.4); therefore >it meets
, ‘ b § i

Z(a, r) 1in some point z, and

. 4
z, € G(xi, t, 1)

PRI DR
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for some T/ € [vy» til. But z, belongs to the compact set E(a, r),

4 1
8o that for some subsequence z, —Z, and TJ Tl € [‘ro, tO]. Now
x, € F(zi, T3 t,)

implies, as before

L §
x, € ¥(z,, -ro,' t,)

Yy = !
%, € G(xo, t 'ro) Gge

Applying the elementary properties of the function G, one sees

G;_C F(c(a!, * ) T [x, t,1) =

1
o’

= P(G(xoa tos 10)’ T [70: tol) = H.

This 1ast set is contained in the interior of Z(a, r) and so sust be

z but on the other hand 2z, € Z(a, r) implies that z, lies on the

o’
(boundary of that) sphere, which gives the desired contrediction.

Remark: If v St  and ACX amd G(A, t, 7)) are compact, then
c(a, t, t) 1s compact forall T 57 st . Indeed

G(A, t

o’ t) C F(G(A, toy To): To? T),
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vhich is compact. G(A, to, T) 18 therefore totally bounded, and as it

is closed, it is compact.

Corollary 5.1: G(xo, t, 1’0) is continuous at t =7 . According to

the preceding theorem
p(a(x, t, 7), G(XO: to! to)) = p(G(x, t, T), xo) =

= p*(G(x, t, 7), G(xoy to: to)) -0
for x X, t "to’ T -oto, TEt,

Theorem 5.2: If G(xo, t,, 1';)) is compact, t, ¥ 7, then the func-

tion G(xo, t, T) 1s continuous in T at T = Toe

Proof: If To = to this result is included in the preceding

corollary, so that T <t  may be assumed. For T =T,
P*(G(on t, ), G(xo: to To)) -0

is a consequence of Theorem 5.1, and only

p*(G(xo, tos To): G(xos to.v T)) -0

remairs to be proved. As G(xo, to, 'ro) is compact, this is equivalent

to the condition: given any Y, € G(xo, to, 'ro) amd any sequence

Ay AP ta (P g o
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T, 2Ty ('t'1 <t, 1=123 ..., there is a sequence y, € G(xo’to’Ti))

1
such that Yy =Y for 1 s o, This sequence Yy is easily constructed

in the following way:

1) It T, <7, take y, € G(Yox T Ti)C G(xo: ty "1)-
11) ¥ t, >7, take y, ¢ G(xo, t, TN l?(yo, T t,).

111) 1r T =T, take y, =y ¢ G(xo, t 1’0).

In all three cases, for 1 —w®, T, »T and by continuity of F(x, t, 1)

or G(x, t, T) (at t =7 din this last case), the result y, -y, 1is

obtained (see fig. 6).

Theorem 5.3: If A ( X and G(A, t, 7)) are compact, T st and
€ >0, then there is 8 > 0 such that

p*(G(A, t, T), G(Aon tol 7)) <e¢

for all AC X, t 27, suchthat p*(A, A) <8, |t -t ]| <3,
Te¢ [1'0, tol.
Briefly speaking, as long as G(A, t, T) is compact, it is upper

semi-continuous in (A, t) uniformly in any finite T-interval.

Proof: Assuming the theorem to be false, there are some sequences

Aic X, t;, o>t z € [v, t ], v, ¢, suchthat p*(A, A)) -0 and
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p*(G(A, 5, T,), G(A, t, 7,)) >a >0 (1=1,23 ...).

This means that there are points x, € A, (1 =1,2,3 ...)

such that
p*(G(xi, ti’ Ti)’ G(Ab: to: Ti)) >a.

As p*(Ai, A)) -0, one may assume that all A, (1 =1,2,3, ...)
are contained in some compact set B. Therefore some subsequence
4 x1 -X where X, € Ab' Taking subsequences, one may write also

?
IR [To, tol.

By Theorem %.1, therefore

lim p'(G(xii tia fi); G(xo; to T')) = 0.
1 e

But as x, € Ab, also
1lim P'(G(Xi: ti’ 11), G(Ab: to) T')) = 0.
i 9=

By Theorem 5.2,
lim p'(G(xiJ t 71)) G(Ab: t, 71)) =0

{1 9o

in contradiction with the assumption.

Comparison of the F and G-functions. Propositions 5.1, 5.2, 5.3 and

5.4 and Theorems 5.2 and 5.3 show that, as long as G(x, tos t) remains
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totally bounded, it satisfies all the axioms of the function F(x,to,t),
but G(x, to t) may become totally unbounded (example 5.1), thus vio-

lating the continuity in t.

Even disregarding this difference, it is confusing to treat F
and G as the same function, because the axiom III (semi-group property),
satisfied separately by F and G, give rise to the following weaker
relations when combining both functions:

a(F(x, tol t2)' t2: tl) )F(x: tox tl)
G(F(x, tlo ta)l taar to) JG(x, tl) to) ~
to st 3 t2

1
F(G(x: t2, to): t, tl) )G(x) t2: tl)

P(G(x, tl’ to)’ t, t2) )F(x: tl’ t2)

vhere the inclusion sign cannot, in general, be replaced by the equality

sign. The proof of these relations is obvious (fig. 7).

6. Trajectories.
Lemma 6.1: let F(x, t, T) and G(x, T, t) be the attainability
functions of a generalized control system, and ¢: [to, t]_] —-X a not

necessarily continuous mapping such that to ] tastb FJ tl imply

‘P(tb) € F(‘P(ta): ty »t,). Then x = o(t) is continuous.

Proof: Suppose t  fixed and t ot,, (t, t, € [to, tll)..

Then:
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1)  1f t>t, o(t) € Flp(t)), t,, t) and o(t) »o(t)) by

axiom V;

11) 1 t <t, o(t) e Glp(t,), t,, t) and o(t) »o(t,) by

Theorem 5.2.

Definitions. A trajectory of a generalized control system is

& mapping @: [to,tl] -X such that t s.ta st 8t => qa(tb)e F(q:(ta),ta,tb).

A trajectory P [ta’ tb] is a prolongation of the traJéctory
®o: [tc, td] ir [tc, td]C (t,, tb] and cpl(t) =q)2(t) on [tc, td].

Sometimes it is conveg}ent to consider a trajectory in the state-
time space y: [to, tl] —+X X R, defining ¥(t) = (p(t), t). In the
state-time space a trajectory is a Jordan arc. Indeed, it is continuous
and without multiple points.

As usual in dynamical systems positive (and negative) half trajec-

tories starting at some (xo, to) will be considered sometimes,

Theorem 6.1: If, for a certain geheralized control system,
x, € F(xo, . tl), then there exists a trajectory o(t) defined in
[to, tl] such that ¢(t°) =X, ¢(t1) =X

Proof: Assuming, for simplicity, to =0, tl =1, a trajec-
tory satisfying the desired boundary conditions can be constructed in
the following way:

For t=1/2, 1/4, 3/4, 1/8, 3/8, ..., ‘% ... the values of

2

@(t) can be chosen successively such that

P T T
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-1 -1 +1 1

oD ¢ Fe®D), B, By na(e(®)), By, B,
2 2 2® 2 2 2% 2

defining @(t) for all binary fractions and obviously satisfying the

definition of a trajectory. For the remaining values of t,

n [F(p(t'),t',t) nc(e(t™),t",t)] = k(t)
t', t" binary fractions '

t'<t<t"

is not void because K(t) 18 the intersection of compact sets with the
finite intersection property. It is easy to see that K(t) 1s a single
point, but taking anyway ¢(t) € K(t), this satisfies the relation de-
fining a trajectory. Indeed, if for example t, <%, ¢ [0, 1] are not
bimary fractions, there is & binary fraction tb, such that t. < t.b < tc.

Therefore

o(t,) € k(t,) C a(o(ty), &, t,),

¢(tc)€ K(tc)c F(‘P(tb): tb.v tc):
from which it follows that

o(t,) € Fla(t,), t,, t.).

Theorem 6.2 (Barbashin): If wi(t), (1 =1,2,3, ...) are trajectories
of a certain generaslized control system, which are defined in the inter-

and if T)=x, »x_ for {1 »w, then there is8
P35 o ’

s
val Toit..'l‘ 1

l’
some subsequence @, (t) converging to a trajectory qao(t):
J
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lim g, (t) = q;o(t) T, sts7T,
Joe= )

and the convergence is uniform in the interval [To’ TJ.]’

Proof: As xj; - x_ it may be assumed that all x, € sCx

vhere S 18 compact, and hence qwi(t) € S, where S, = F(s, T, t)
18 also compact for any t ¢ (T, 7 1
Teking any countable dense subset (t 1} of the interval
T + T
o

1
[T, T,], for example ty =T, t, =Ty, t,= —

P -

t, =T + 2q(Tl T,), ... for any value t, 1t 1s possible to choose a
subsequence @, such that ¢ (t ) converges. Furthermore ¢ (t.)

i i 3,n n i 3,n n

2 14
can be chosen to be a subsequence of the one corresponding to tn-l' Then,
according to the well known classical procedure » the diagonal sequence
?, eonverges on the whole dense set [tn}, to values which will be
Jrd
denoted by q;o(tn).
Congider two values tr < ts. It will be shown that

Qo(ts) € F(q;o(tr), to ts)’ Take q;i(t) to be the diagonal sequence de-
fined above which converges pointwise to ? o(1:) on the dense subset [tn).
Given any € > 0, there is n, such that p((pi(ts), cpo(ts)) S% for

all { 2 n. A value 5 >0 can also be determined such that

€
p*(F(x, to ts)’ F(Qo(tr), t, t) = 5 for p(x, q>o(tr)) £ 5. Corres-
pondingly, for some n,, p(q)i(tr), ‘po(tr)) £86 for 1 Z n,. Hence,

for 1 2 mx(nl, n2):

i e PP DR
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po,(t,), Flo (t), t, t.)) % ploy(t,), @ (L)) +
+ p(¢i(t8)’ F(‘Po(tr)) tr) ts) s

b(9y(t,), 9y (8)) + o*(E(R,(t)s £ t,)s PO (t), o, t,)) 8

Therefore p(,(t,), F(o,(t.), o ) =0 and g (t)) ¢ F(p (t), tot,).

At the remaining values of t, qao(t) can be defined by the
same procedure used in Theorem 6.1, obtaining thus the trajectory P (t)
defined in the vhole interval [T, T, 1. o

It remains to prove that opi(t) -oq»o(t) ;mirormly (until now
the convergence has been proven only for the dense subset mentioned
above). Assuming the contrary, there is some subsequence q;i and
corresponding values tJ € [To’ TlJ (§J =1,2,3, ...) such tgat tJ -t
and cpid(td) >y # (po(to) for J o,

Ir tOST, take any fixed value T, to &7 STl; ir

1

to = T, take T = Tl' Disregarding a finite number of terms, it may

be assumed that t, <T. Hence, ¢ (1) € F(p, (t,), t,, T), and by
J o 140 J

upper semi-continuity,
Q’O(T) € F(y, t,, 7).

Therefore
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P(ty) = lim @ (v) = lm F(y, t, 7) =y,
T —bto T -oto

vhich contradicts the assumption.

Theorem 6.3: If q>i(t), (1 =1,2,3, ...) are trajectories of a cer-
tain generalized control system, which are defined in To sts Tl’
and 1if :pi('rl) -x, for i -, and in addition G(xl, T, To) is
compact, then there is some subsequence q;i converging uniformly to

J
& trajectory qao(t) .

The proof is the same as for the previous theorem.

Theorem 6.4: If cpi(t) are trajectories defined for t € [To, + ®),

and if q’i(To) X, for 1 - =, then there is a subsequence converging
to some trajectory %(t) (t = To)’ and the convergence is uniform in

any finite time interval.

Theorem 6.5: If cpi(t) are trajJectories defined for t ¢ (-, Tll, and
ir ¢1(T°) -+x, for 1 sm, and if G(xo, T,, t) 1s compact for all
t § T, then there is a subsequence converging to some trajectory q;o(t)

(t = To)’ and the convergence is uniform in any finite time interval.

Theorem 6.6: If X, € X and for a certain general control system,

G(xo, t, T) 1s compact for every T, t) <T st  but not for T =t
then there 1s a trajectory ¢(t) defined in (tl, tO] passing through
x,, t, wvhich is unbounded for = -»"tl, (p(x) bas no limit point for

T —otl).

g b vt 30 S R L
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Indeed, it is sufficlent to take a sequence Xx, € G(xo, t, tl)
wvithout limit point (this 1s possible because G(xo, t., tl) 1s not
totally bounded) and a corresponding sequence of trajectories cpi(t)
Joining ¢1J(t) vhich converges for every te (t,, t ] defining a
1limit trajectory ¢o(t), (tl <ts to), but obviously for t = t,

there is no limit point.

7. Invariant sets. Definitions.

The well known definitions given in the theory of dﬁﬁmical
systems can be applied in a strong and a weak form to the generalized
control systems, according to vhetber it is required that all or only
some of the trajectories starting at a set, have a certain bdbehavior.

In all the following definitions, a certain generalized control

system 1s supposed to be given by its attainability functions, F(x, to’ t)

and G(x, t, t).

Definition 7.1: The set AC X 1s called strongly invariant, if for

all t, 2t, F(A t,, tl)C A and G(A, t), to)( A.

1l

Definition 7.2: The set AC X 1is called positively strongly invariant,

if for all t 2t , F(a, t, tl)C A.

1

Definition 7.3: The set AC X 18 called negatively strongly invariant,

1f for all t, ¥t , G(A, t, t,) C A
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Remark: It is easily seen that these definitions could be given in the

following equivalent vay: for every x € A, F(x, t , t;) C A and so

on.

Definition T.1l 18 also equivalent to:
F(A, t o t1) = G(A, ty, ) = A

Indeed, AC G(F(A, tos t1)s to)C G(A, t,, to)C A gives
A = G(A, t., to) and similarly for F(A, to tl).

Definition 7.4: The set AC X 1is called weakly imvariant, if for
all ¢, 2t andall xeA, F(x,t, t,)NAFY and

6(x, t,, t ) NA ¥ 4.

Definition 7.5: The set A( X 18 called positively weakly invariant,
if for all t) ¥t  andall xe A, F(x, t, t,) NAFQ.

Definition 7.6: The set A( X 1s called negatively weakly invariant,

if for all t) ¥t  and all xe A, G(x, t,, t ) NA#.

Theorem 7.1. (Barbashin): A necessary and sufficient condition for a
closed set A to be positively weakly invariant, is that for any
x,€ A and any t , there exists a trajJectory q>°(t) defined for

telt, w), starting at cpo(to) = x_  and totally contained in A.

The sufficiency is obvious; to prove the necessity, suppose

to = 0., Assuring A 1is positively weakly invariant, a trajectory
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through x o will be constructed, which is contained in A for all

tz to = 0.

In the interval [0, 1] consider the following sequence of
trajectories.

As F(x, 0, 1) NA # ¢, there exists a point
x), € F(x, 0, 1) N A and a trajectory cpl(t) such that vl(o) =X
9,(1) = x,,.

8imilarly it is possiﬁle to determine x,, € P(xo, o, %) nA
and x,, € r(x?_l, %, 1) N A, and a trajectory q;a(t) such that
9,(0) = x, va(%) =X, (1) =x,,.

In the same vay we determine q>n+l(t) such that @nﬂ(o) =0
and for t = z-ﬁ, (P = 1,2, ..., 2"), @, (t) belongs to A.

According to Theorem 6.2 some subsequence of the 9, converge
and define q;o(t) in the interval [0, 1]. By construction, cpo(t)
belongs to the clovsed set A for all values of t which are binary
fractions, and therefore for all t e [0, 1].

The same procedure can be used to define tpo(t) in the interval
[1, 2], and 80 on, on the vhole real halfline [0, w). This proves

the theorem.

Theorem T.2: A necessary and sufficient condition for a compact set A
to be negatively weakly invariant is that for any X, € A and any to,
there exists a trajectory cpo(t) defined for t e (- =, tl], ending

at wo(to) = x_, and totally contaired in A.
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The proof is the same as in the previous theorem, with the ex-
ception of the construction of the trajectory cpo(t) in each finite
interval, for example [-1, 0]; this is due to the fact that the
theorem 6.3 cannot be applied directly to prove the convergence of a
' subsequence of the cpn(t), because G(x,, t., t) 1s not necessarily
compact. This difficulty can be overcome by taking into account that
all the wn(t), (t € [-1, 0]), Vbelong to the compact set
(A N G(xo, 0, -1), -1, [-1, 0]). This insures the convergence to

some limit trajectory q)o(t).

8. Qeneralized Liapunov's functions.

Definition 8.1: Given a scalar function v(x, t) defined in an open
region GC X x R, and a closed set A( X x R, the function v(x, t)

vill be called "positive with respect to the set A" (written: "positive

(") 1r:
1) G DA
11) v(x, t) 1s lower semicontinuous, i.e. for any sequences

x, »x, t, ot (1 =123 ...), lm v(xi, ti)z v(xo, to).
111) v(x, t) S0 for x € A.

1iv) v(x, t) >0 for x ¢ A.

Definition 8.2: The scalar function v(x, t) defined in an open region

6C X X R, 18 called positive definite with respect to the closed set

AC X x R (vritten "positive definite (A)"), if



1) G DA
11) v(x, t) 18 positive (A);

111) there exist two continuous and strictly increasing functions

[}

vl(r) and va(r) of the real variable r 2 0 such that vl(O)
72(0) =0 and for x ¢ A, v (r) s v(x, t) s vy(r) vhere

r = p((x, t),A), p being the distance in X x R.

Pefinition 8.4: The scalar function v(x, t) defined in an open region
6C X xR, 4s called positive definite with respect to the closed set
ACX, if v(x, t) 1s positive definite with respect to the set

A X R.

Definition 8.5: The upper and lower right total derivatives of the
function v(x, t) with respect to the generalized control system charac-

terized by the attainability function F(x, t, T) are defined by:

¥, t) = 1tn 2.u.b. (HEOGET),T) - V), fcr <t v 5),
. & 0% T -t

'ix, t) = 1m g.1.p, (LELT),T) - Yt pcr<t s 5.
LN T -t

Theorem 8.1: If the set AC X 18 positively weekly invariant, so is

its closure K.

Proof: Assume x ¢ A, x, €A, (1=1,23 ...) and X, X .

Then, for any t,» ‘there exist positive half trajectories q:i(t),
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(t = to), such that q)i(to) =x, and "1(t) € A. By Theorem 6.4
there is a limit trajectory q>°(t); therefore tpo(to) =X,

P, (t) ¢ A and by Theorem 7.1 A 18 positively weakly invariant.

Theorem 8.2: If AC X 1s closed, v(x, t) 1s positive (A) and for
all x belonging to the boundary of A and all t, r(x, t) <0,

then A 18 strongly positively invariant.

Proof: Assuming the contrary, there are some Y, € A, to <%
and a trajectory ¢(t) such that q)(to) =¥, @(7) § A. Define
T, = lub.(5; q)((to, 7)) C A). Then x, = 9(T ) € A because A 1s
+
closed, but there is a sequence x = o(t,) ¥ A wvith Th 27,

(n=1,2,3, ...).

Therefore x  belongs to the boundary of A, v(xo, t) £0,
but v(xn, t') >0 forany t, t' and

) .
= Y ¢ - vz, t)
t' -t

20, forany t' ot

vhich contradicts ¥ (xo, t) <o0.

Theorem 8.3: If A(C X 1s closed and positively strongly invariant, and
if v(x, t) 1is positive (A), then ?(x, t) $0 hclds for any (x, t)

such that v(x, t) = 0.

Proof: If v(x, t) =0, then x e A and F(x, t, 1) ¢ A,

(x >t), so that

e v e . S
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Lup, MEE D), 1)+ v 8) g

The proof follows then from the definition of ¥ (x, t).

Theorem 8.4: If AC X 1s closed, v(x, t) 1s positive (A) and for
all x belonging to the boundary of A and all t, f’(x, t) <o,

then A is weakly positively invariant.

Proof: Assume the contrary. Then there are y ¢ A, to s A3
such that -F(y, t , T,) N A =fg. As both sets are closed, there is
some neighborhood of F(y, t,, 'rl) vhich does not meet A. By continuity
of F, there is an interval such that F(y, t, T)NA=g for
‘r; <7t % T Suppose To 18 the minimum of the values 1'; satisfying
this condition (this value T, exists and ;‘o Z2t). Then
F(y, t,T)NAFY let xe F(y, tyy T,)) NA. Then xe dA and
v(x, 7)) $0. But for To<TET), Fx,7,T)NA=g and

v(x', t) >0 forany t and x' ¢ F(x, T,» 7). Therefore

v(F(x, To? T), ) - v(x, fo)
T - To

>0

for 57, <t $7,, which contradicts the hypothesis #'(x, 1,) <O0.

Theorem 8.5: If A(C X 1s closed and positively weakly invaz;iant, ir
v(x, t) 1s positive (A), then i+(x, t) $ 0 holds for any (x, t)
such that v(x, t) = 0.

Proof: If v(x, t) =0, then x € A and for any Tt 2 t,

F(x, t,7) N A # ¢. Therefore
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° (r( 2 tl ‘)1 f) - (x1 t)
g1 b (PR 2t Sl S 2y 5 0

and f'(x, t) <0 follows.

Remark: Theorems 8.3 and 8.5 are really existence theorems for Liapunov-

functions, because functions v(x, t) which are positive (A) always

exist, for example v(x) = p(x, A).

9. gtability.

Many different kinds of stability are well known from the theory
of dynamical systems. In this paper only the most important types will
be considered, rather as an example than as & full development of the
theory. The definitions are given according to Yoshizawa [12]; they

refer to a certain generalized control system characterized by the

function F(x, t, 7).

Definition 9.1: The set A( X 18 said to be uniformly strongly stable,

if for any € >0 there isa 3 >0 such that F(S,(A), ¢, 7)C 8, (A)

for all ¢t 5 7,

Remark: If A 1is uniformly strongly stable, then A 18 strongly posi-

tively invariant and uniformly strongly stable.

Indeed, 1f x € A, p*(F(x_, t, 1), A) = 0 and therefore

r(xo, t, ©)C A
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Definition 9.2: The set AC X 18 said to be_uniformly weakly stable
if for any € >0 there 13 a 8 >0 such that if p(x, A) <8,
t, € R, there exists a trajectory ¢(t) through (xo, t,), (1.e.

Qo(to) = xo) satisfying p(q:o(t), A) <e forall tzt.

Remark: If A 1s uniformly weakly stable, then A 1s positively
weakly invariant.

Pefinition 9.3: The set A( X 18 said to be uniformly strongly quasi-
asymptotically stable, if for some fixed 8 >0, and forany € >0,
there is & T(€) >0 such that forall ¢ xt, +7(c),

F(8y(A), t,, t) C 8.(A).

Definition 9.4: The set A X 4s said to be uniformly weakly quasi-
asymptotically stable, if for some fixed 8 >0, given any pair

(xo, t,) € 8g(A) X R there is a trajJectory o(t), with cp(to) =X,
such that for any € > 0 there exists a T(¢) >0 with the property
that p(p(t), A) <€ forall t=z t, + T(e), T(c) being independent

from X to.

Definition 9.5: The set A( X is said to be uniformly strongly asympto-

tically stable if it is uniformly strongly stable and uniformly strongly

quasi-asymptotically stable.

Definition 9.6: The set A(C X 1s said to be uniformly weakly asympto-
tically stable, if it is uniformly weakly stable and uniformly weakly

quasi-asymptotically stable.
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The following lemma concerning functions of a real variable

will be needed.

lemma 9.1: If the real function of the real variable u(t),
defined in the interval [0, €], 1s lower semi-continuous, and at

every point of that interval the right lower derivative satisfies
+
i(¢t) so,
then u(T) s u(0).

Proof: Suppose u(0) = 0; it will be proven that for any given

€ >0, u(T) s e.

.'Indzedr, there 1s some value tl such that 0 < tl <T and

u(tl)

Y

€

<r

This follows from the fact that Lim . 29;-)- # 0. There is also a
t -0

value t2 such that tl<t2<!l' and

u(ta) - u(tl)

-

<

Haim

In this way a sequence tl, t2, t}’ +s« can be obtained, such that

u(tn) = u(tn) - u(tn_l) + u(tn_l) - u(tn_a) + ..

ees + u(ta) - u(t;) + u(tl) - u(0) <

€ €
<Hltptaa t gttt -0 =gt
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- If by this procedure the value t = T can be indefinitely

approached, i.e, tn - T, then by the lower semicontinuity
€
u(r) & Um u(t ) s ;m t =e.

In case T canmnot be approached indefinitely, there is a g.l.b.
of those values of t which cannot be passed by any such sequence tn.

Call T this g.l.b. Then there is a sequence tn-o‘t and

u(t) % <.

But g*(r) $ 0 and therefore some T' exists, such that T <tT' < T

’ -
and ‘L(T—,‘%-—:—:-'-(ﬂ < %, 80 that the sequence can be extended farther
than T, against our assumption. Therefore it can be extended approach-

ing T 1indefinitely.

Corollary: If u(t) 1is lower semi-continuous in [0, T], amd

§'t) £ 0, then u(T) s u(0).

lemm 9.2: If v(x) 18 a real, lower semi-continuous function
defined on the space X, and if with respect to a generalized control
system, N (x) $0, then the set A(A) = (x; v(x) 5 )}, supposedly

non-empty, 18 a closed positively strongly invariant set.

Proof: A(\) 1s closed because v(x) 1s lower semi-continuous.
Assume x € A(A), but for some t <t,, yeF(x, t, t;) does
not belong to A(A). Then there exists a trajectory ¢(t) from x = o(t,)

to ¥y = q(t,). Along 9(t)
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oo - T lo(tse)) - v(o(t)) ¢ 5% < o
' -0

pesides, v(p(t)) 1s lower semi-continuous, 80 by the corollary of
Lemma 9.1, v(y) s v(x) s A contradicting our assumption. This proves

that for any x € A(A) and t 3¢, F(x, t, t) C A(r).

The same proof applies to the following.

Jemma 9.3: If v(x, t) 1is a real, lower semi-continuous func-
tion defined on the space X x R and if ¥(x, t)' s 0, then the set
A(\) = ((x, t); v(x, t) s 1)), supposed non-empty, is a closed positively

strongly invariant set.

Lemma 9.4: If v(x) 1s a real lower semi~continuous function
defined on the space X, and if ¥'(x) = 0, then the set
A(\) = {x; v(x) § 1), supposed non-empty, is a closed positively weakly

invariant set.

Proof: Suppose ) =0, A{0) = A = (x; v(x) s 0}, Taking any

fixed x , t , the function

o?

u(t) = g.1.b.(v(x); x € F(xo, t, t))

o’

18 lower semi-continuous in t. Indeed, as F(x_ , t , t) 1is compact,
the g.l.b. 1is really the minimum of v(x). As v(x) is lower semi-

continuous in x, given € >0, for each x there is a 8(e, x) >0



by~

such that for p(x, x') <8, v(x') 2 v(x) - ¢. F(xo, t,, t) can

be covered by a finite number of such neighborhoods, therefore there
is an 7€) such that for p(x*, P(xo, t, t)) <y,

v(x?) 2 min v(x) - € = u(t) - €. As F(xo, t, t) 1s continuous in t,
~ the lower semi-continuity of u(t) fonovs.

In order to evaluate the right lower derivative of u(t) at the

point tl, suppose that v(x) attains at the point x) its minimum

in F(xo, t, t):
u(tl) = v(xl) = min(v(x); : € r(xo, t,, tl}.

+
As ¥ (xl) $ 0, there are sequences T, ed y,, (1 =1,2,3, ...)
such that T, -.tI, Yy € F(x, t,, 7,) and

lim =q=V (xl) s 0.
h ey

Therefore,

+ u(t) - u(t,)
8(t)) = Ma, glb{ ——250<1<9) 5
8 -0 1

u('ri) - u(tl)

p Y ] T-tl

v(yi) = V(Xl)

1w Tt

=a 20,
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proving that §1_+(t) $ 0. Hence, lemma 9.1 can be applied and for all

»}_t >t , and
u(t) = min(v(x); x e F(xo, t, t)) = u(t)).

Therefore F(x , t,, t) N A # @, proving the lemma.

Teking the space X X R as phase-space, the following lemma 1is

obtained.

Leama 9.5: If v(x, t) 4is a real, lower semi-continuous function
defined on X x R, and if ¥ (x, t) S 0, then the set
AQZ) = ((x, t); v(x, t) s A}, supposed non-empty, 1s a closed positively

weakly invariant set.

Remark: In the preceding lemmas, the function v(x) (respect.
v(x, t)) does not need to be defined on the vhole space X (respect.

X X R) bdut on a domain G such that A(A) belongs to the interior of

G.

lemma 9.6: If v(x, t) is a real, lower semi-continuous func-
tion defined on a closed set D( X x R, and if f’(x, t) £0, 1if
A= ((x, t); v(x, t) )} 1is a non-eapty subset of D, then for each
(x,, t)) € A there is a trajectory @(t) such that o@(t)) = x, and
one of the following two possibilities holds:

1) o(t) e A forany t >t ; or

11) .cp(t) leaves A at a point belonging to the boundary

of D.

— e i o -
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Indeed if for each t in the interval [to, tll, the set

(l'(xo, t, t), 1"-] N A 1is non-empty, then the construction used in

Theorem 7.1 proves the existence of a trajectory ¢(t) starting at

(xo, to) and contained in A for t, st st,. Ifthis trajectory

cannot be extended in A, there are values Ty -.tI such that

(r(xo, t, 11), Tlna-= g.

Bence, ¢(tl) belongs to the boundary of A. Assuming that it does not

belong to the dboundary of D, then for all « 4 sufficiently near tl,
(r(¢(t]_)) t1: 71)3 71] C o
In this case the procedure used in Iemma 9.4 can be applied and
u('ri) = m(v(x: ‘1)3 (x, Ti) € (F(@(tl)) tlori)o 11)] S “(tl)-
This 1s a contradiction, because then
(F(o(t,), ¢,, ) I NAFY

Therefore (qa(tl), tl) must belong to the boundary of D which

~ proves the lemma,

Theorem 9.1: If AC X 1is closed and v(x, t) 1s a real function de-
fired in some neighborhood of A, 1if wv(x, t) {s positive definite (A)

=+ .
and ¥ (x, t) S0, then A 1is uniformly strongly stable.
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Proof: By definition of positive definite function, there exist
two strictly increasing continuous functions vl(r), v2(r) such that

vl(o) = v,(0) = 0 and for x ¢ A,

Vl(p(*: A)) s v(x, t) = Vz(p(x, A)).

Given a sufficiently samll € > 0. there is 8(e) such that
vz(b) = vl(e); indeed, v2(o) = 0, va(e) z vl(c-:) and v, 1s con-
tinuous, so that 0 < &(t) s e¢ (fig. 8).

For p(xo, A) <% and any L v(xo, to) s v2(5) = vl(e). By
Lemma 9. , the set ((x, t); v(x, t) s vl(e)] is positively strongly
invariant, so that for any t ¥t and xe F(xo, to t),

v(x, t) s vl(e). Therefore
v (o(x, A) 3 ¥(x, t) 5 v)(e)

implies p(x, A) S €, which proves that

F(xo, t,, t) e S (A).

Theorem 9.2: If AC X 1is closed and v(x, t) is a real function de-
fined in some neighborhood of A, if v(x, t) 1is positive definite (A)

and ¥*(x, t) s 0, then A 1is uniformly weakly stable.

Proof: As in the preceding theorem, there are

vl(p(x, A)) s v(x, t) s v2(p(x, a)), and for sufficiently small € >0,

there is &(e) such that v2(6) = vl(e).

O U S



-48-

By Lemma 9.5, the set B = ((x, t); v(x, t) £ v (€)] is closed
and positively weakly invariant. By Theoream 7.1, for any xo, to such
that v(xo, to) € B, there exists a trajectory ¢(t) such that

q;(to) =x_  and for any te [to, o), @(t) € B. Therefore, writing

x = ¢(t),

vi(p(x, A)) s v(x, t) s Vl(E),

or

p(x, A) s ¢ |

wvhich proves the theorenm.

lenma 9.7: If u(t), o¢(t) are real functions of a real variable
defined in the interval [0, T], if u(t) 4is lower semi-continuous and

p(t) is differentiable, and if &'(t) s Qgéﬁl, then

u(T) - @(T) 5 u(0) - 9(0).

This is an application of Lemma 9.1 to the function wu(t) - @(t).

Similarly:

lemma 9.8: If, under the same conditions, at (t) = d_:g{_g)_ then

uw(T) - ¢(T) = u(0) - ¢(0).

Theorem 9.3: If A(C X 1s closed and v(x, t) 1s a real function de-

fined in some closed neighborhood SG(A)’ if v(x, t) and - ;'r-+(x, t)
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are positive definite (A), then A 1s uniformly strongly asymptotically

stable.

Proof: Ry Theoream 9.1, A 1is uniformly strongly stable, so

that only the quasi-asymptotic stability has to be proved.

By definition of & positive definite function, there are in-
creasing continuous functions Vis Vo ¥y Vo such that

v, (0) - v,(0) = w,(0) = ¥,(0) = 0 and for x 7 A,
v (o(x, 8)) 5 ¥(x, £) 5 ,(e(x, A)),
vi(p(x, 8)) 5 - ¥7 (x, t) 5 wy(p(x, 8)).
Besides, it may be assumed that
vi(8) = v,(8') = =

is finite.
Given any sufficiently small € >0, the numbers 61 <90,

b>0 and T(€) >0 can be found such that

72(51) Vl(e):

b

w, (%))

and

e n
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The proof of this theorem will consist in showing that for
any x € 85,(A) and any t_, t; such that t, >t ¢+ T(e), every
trajectory o@(t) starting at ¢(to) = x_, satisfles p(w(tl), A) <e.
For every trajectory x = g(t), the inequality w(x, t) = v2(5') = vl(s)

insures that @(t) remains in SS(A) for t zt_; besides

T L
(&vwﬂbto s ¥(x, t) = - v (o(x, A)).

If in the interval [to, t, + T), the trajectory o@(t) would

remin outside S, (A), so that p(p(t), A) > 5,
1
(= .
a-{»: V(Q(t), t) s - wl(p(cp(t), A)) s - "1(51) = - b.

By Iemma 9.8
v(cp(to +T), t,+T) $a - 1T,
a bYeing an upper bound of the value v(w(to), to). Substituting the
value of T, the contradiction

v(o(t, + 1), t°+T)$a-b-%=o

1s obtained. Therefore every trajectory starting at x , t, € SB'(A)
comes into Sy (A) at some t' 1in the interval [to, t,+ T]. But then,
1

for any tl >t

vy (p(a(t;), A)) 5 ¥(a(t;), b)) = w(a(t"), 1) S v,(8)) = v)(e)



8o that p(tp(tl), A) s €.

lemma 9.9: If v(x, t) 1s a real function defined in X X R,
ir r(t) ‘1s continuously differentiable, and ulx, t) = v(x, t) - £(t),

then
G(x, t) = £1(x, 1) - £(t) + v(x, t) - ELE,

Proof:

+ -
8 (x,t) = lin g.l.b..{"-L(—*—*—)-‘—H X, t,t T'_-;‘—"’-‘Lﬂ; t<T<t+ 5}.

5 -0t

lim g.1l.b. gv(F(x‘t’T)’éiﬂ r(T) = v(x,t) - £(t), t<T<t+ 5§=

B 3 -0t t-%
=« 1lim g.l.b. i["(l"("lt")n"l - v(x,t)]e(t) + v(x,t)(f(r) - £(t)) /=
8 »0t T-t T -t

Je | &L {"(F("’t”,}‘f)t' v(6t) §cr <t o+ 5} . () +
-
+ v(x,t) %ﬂ =

= i'(s, t) - £(t) + v(x, t) - L),
dt

Theorem 9.4: If A(C X 1s closed and v(x, t) 1s a real function de-
fined and uniformly bounded in some closed neighborhood SSZAS, if

. 4
v(x, t) and - Vv (x, t) are positive definite (A), then A 1is uni-

formly weakly asymptotically stable.
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Proof: By Theorem 9.2, A 1s uniformly weakly stable, so that

only the quasi-asymptotic stability has to be proved.

By definition of a positive definite function, there are increas-

ing continuous functions V1r Vo Vs v, such that

vl(o) = vé(o) = wl(o) = vé(o) =0 and for x ¢ A,

vl(p(x} A)) 5 v(x, t) s VQ(P(X: a)),

vi(e(x, 4) 5 - 5%(x, t) 5 wy(o(x, A)).

Besides, it may be assumed that

v,(8) = v2(5') = a

. 1s finite.

Given € >0, the existence of a number T will be found such

that for any (x, t e S51(A) X R, there is a trajectory e(t) such
that |

11) ¢(to + tl) € SH(A) for some t; T, where

111) va(q) = v, ().

w. (p)
1 *
;;(BT is continuous and positive in the interval

[n, 5], hence, in that interval it has a lower bound g =

The function

a(n) > 0. low
the function
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t-t
u(x, t) = v(x, t) - ea( °)

1s lower sexi-continuous and for n s p(x, A) 58,

t-t
_\f(x, t) = [{_r+(x, t) + av(x, t) Iea( °) s

t-t
# [-wvy(p(x, 4)) + av,(e(x, A))]ea( »°) =

-vl(p(x, A)) . G(t = to)
= [- m + a,va(p(x, a))e s 0.
Kov the Lexa 9.6 can be applied to the function u(x, t), taken
on the set D = ((x, t); n % p(x, A) £ 8), where f_f(x, t) s 0.
Suppose (xo, t,)) fixed, X, € Sgi(A). Hence, —
v(xo, to) s vz(p(xo, A)) < v2(5’). Nov, taking v'a"(p(xc, A)< k< vz(a'),

the set

B=((x; t); u(x, t) sk, ta t,, o(x, A) & )
satisfies the requirecents of lez=a 9.6. Therefore there is a trajec-
tory ¢(t) startirg at q)(to) =x, and:

1) remaining in B for all t>t, or
11) leaving B at the boundary of D.

But @(t) must leave the set B for some t, st + 7T, where



=5k~

because for t > to + T the section of B with the plane t =T is

empty. Indeed

u(x, t) 5 k <v,(5') amd

| v,(5")
u(x, t) = v(x, t)e > (x, t)exp(a - —log ——z—y 2

(3')
vl(p(x, a)) :%m z 72(5')

are contradicting. Therefore @(t) must leave the set B on the
part of the boundary where p(x, A) = n or p(x, A} = 9. But B does

not meet the set (x; p(x, A) = 8}, because on this set

u(x, t) = v(x, 1’.)¢aa(1= ) to) z vl(b) = vz(b').

Hence, ¢(t) 1leaves B through the boundary vhere p(x, A) = n and
Q(tl) € SQ(A) for some t, § t, + T, as it was to be proved. Note
that T does not depend on X, t, but only on n defined by
vo(n) = v, (¢).

Therefore the existence of the trajectory ¢(t), starting at
(xo, to) and such that for t, e [to, t, + 1), Q(tl) €8 (A), has
been proved. In order to continue this trajectory for ¢ > tl the
same procedure can be applied, taking ;— instead of ¢. So, ¢(t)
will be extended to some t, vhere q)(ta) € sna(A), vhere
v2(“2) = vl(g-). In general, after n steps, o(t)) € S%(A), vhere

€
vz(qn) = vl(;l-). So, @(t) 4s defined for every t 2 t,.



Besides, for t 2 &,
v (p(9(t), A)) 5 ¥(o(t), t) 5 vy(n) = vy (€)

go that p(p(t), A) s €. Similarly, for t 2t , p(p(t), A) 3 %
This proves that p(p(t), A) -0 for t —-w. The fact that the ¢ -t
are bounded in terms of the T(n), gives the uniformity needed for the

definition of uniform quasi-asymptotic stability. Therefore the theorem

is proved,
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